Abstract
In current gait recognition methods, researchers predominantly focus on gait information at specific spatial scales, with a tendency to overlook information variances across different scales. Additionally, from observation, we found variations in the spatiotemporal information offered by different human body parts. To address these issues, we present a Multi-scale Network for Gait Recognition (GMSN), which aims to highlight key body parts in a more discriminative gait representation. GMSN consists of two key modules: the Multi-scale Feature Extractor (MSFE) and the Part-based Horizontal Mapping (PHM). MSFE employs multi-scale parallel convolutional networks to comprehensively learn features across different scales, capturing both local details and global information for an enriched representation of gait. Meanwhile, PHM focuses on enhancing the learning of crucial body parts that provide clear contours and movement patterns. Experiments on three public datasets demonstrate that our approach attains state-of-the-art recognition accuracy. On the CASIA-B dataset, our model achieves rank-1 accuracies of 98.2 %, 96.0 %, and 87.0 % under normal walking, bag-carrying, and coat-wearing conditions, respectively. On the OU-MVLP and GREW datasets, it achieves a rank-1 accuracy of 90.4 % and 50.6 %, respectively. Also, it can achieve relatively stable results when adding square occlusions to the test samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.