Abstract
The glyoxalase system is a ubiquitous detoxification pathway of methylglyoxal, a cytotoxic byproduct of glycolysis. Actively proliferating cells, such as cancer cells, depend on their energy metabolism for glycolysis. Therefore, the glyoxalase system has been evaluated as a target of anticancer drugs. The malaria sporozoite, which is the infective stage of the malaria parasite, actively proliferates and produces thousands of merozoites within 2–3 days in hepatocytes. This is the first step of infection in mammalian hosts. The glyoxalase system appears to play an important role in this active proliferation stage of the malaria parasite in hepatocytes. In this study, we aimed to dissect the role of the glyoxalase system in malaria parasite proliferation in hepatocytes to examine its potential as a target of malaria prevention using a reverse genetics approach. The malaria parasite possesses a glyoxalase system, comprised of glyoxalases and GloI-like protein, in the cytosol and apicoplast. We generated cytosolic glyoxalase II (cgloII) knockout, apicoplast targeted glyoxalase gloII (tgloII) knockout, and cgloII and tgloII double-knockout parasites and performed their phenotypic analysis. We did not observe any defects in the cgloII or tgloII knockout parasites. In contrast, we observed approximately 90% inhibition of the liver-stage proliferation of cgloII and tgloII double-knockout parasites in vivo. These findings suggest that although the glyoxalase system is dispensable, it plays an important role in parasite proliferation in hepatocytes. Additionally, the results indicate a complementary relationship between the cytosolic and apicoplast glyoxalase pathways. We expect that the parasite utilizes a system similar to that observed in cancer cells to enable its rapid proliferation in hepatocytes; this process could be targeted in the development of novel strategies to prevent malaria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.