Abstract

Triptolide (TP) is an active ingredient isolated from Tripterygium wilfordii Hook. f. (TWHF), which is a traditional herbal medicine widely used for the treatment of rheumatoid arthritis and autoimmune disease in the clinic. However, its adverse reactions of hepatotoxicity and nephrotoxicity have been frequently reported which limited its clinical application. The aim of this study was to investigate the mechanism of glycyrrhetinic acid (GA) effecting on the elimination of TP in HK-2 cells and the role of the efflux transporters of P-gp and multidrug resistance-associated proteins (MRPs) in this process. An ultra performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) analytical method was established to determine the intracellular concentration of TP. In order to study the role of efflux transporters of P-gp and MRPs in GA impacting on the accumulation of TP, the inhibitors of efflux transporters (P-gp: verapamil; MRPs: MK571) were used in this study. The results showed that GA could enhance the elimination of TP and reduce the TP accumulation in HK-2 cells. Verapamil and MK571 could increase the intracellular concentration of TP; in addition, GA co-incubation with verapamil significantly increased the TP cellular concentration compared with the control group. In conclusion, GA could reduce the accumulation of TP in HK-2 cells, which was related to P-gp. This is probably one of the mechanisms that TP combined with GA to detoxify its toxicity. Copyright © 2017 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.