Abstract

SulfatedN-andO-glycans exist in trace levels which are challenging to detect, especially when abundant neutral and sialylated glycans are present. Current matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based sulfoglycomics approaches effectively utilize permethylation to discriminate sulfated glycans from sialyl-glycans. And a charge-based separation to isolate the sulfated glycans from the rest of the permethylated neutral and sialyl-glycans. However, these approaches suffer from concomitant sample losses during cleanup steps. Herein, we describe Glycoblotting as a straightforward complementary method with seamless glycan purification, enrichment, methylation, and labeling on a single platform to address sulfated glycan enrichment, sialic acid methylation, and sample loss. Glycoblottings' on-bead chemoselective ligation of reducing sugars with hydrazide showed excellent recovery of sulfated glycans, allowing the detection of more sulfated glycan species. On-bead methyl esterification of sialic acid using 3-methyl-1-p-tolyltriazene (MTT) effectively discriminates sulfated glycans from sialyl-glycans. Furthermore, we have shown that using MTT as a methylating agent allowed us to simultaneously detect and differentiate sulfate from phosphate groups in isobaricN-glycan species. We believe that Glycoblotting will contribute significantly to the MALDI-TOF MS-based Sulphoglycomics workflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.