Abstract

Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA. In this article, we review recent advances in understanding the role of GlyT2 in the pathophysiology of inhibitory glycinergic neurotransmission. GlyT2 mutations are associated to decreased glycinergic function that results in a rare movement disease termed hyperekplexia (HPX) or startle disease. In addition, glycinergic neurons control pain transmission in the dorsal spinal cord and their function is reduced in chronic pain states. A moderate inhibition of GlyT2 may potentiate glycinergic inhibition and constitutes an attractive target for pharmacological intervention against these devastating conditions.

Highlights

  • Glycine is present at rather low concentrations in all cells of an organism since it is one of the proteinogenic amino acids

  • GlyT2 is sorted to the plasma membrane in lipid rafts, microdomains where it interacts with proteins like neuronal plasma membrane Ca2+-ATPase (PMCA), and Na+/Ca2+-exchanger 1 (NCX1)

  • The localization of GlyT2 seemed to fit into this scheme since immunohistochemical studies revealed that GlyT2 is abundantly expressed in glycinergic terminals along the brain stem, the cerebellum or the spinal cord, that is, in areas where glycine is released from glycinergic neurons [22]

Read more

Summary

Introduction

Glycine is present at rather low concentrations in all cells of an organism since it is one of the proteinogenic amino acids. EGFP (enhanced green fluorescent protein) expression largely overlaps with GlyT2 immunoreactivity in axon terminals, and with glycine immunoreactivity in neuronal somata.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.