Abstract

We have recently discovered an alternative function of the putative metastasis suppressor protein Nm23, which is identical to nucleoside diphosphate kinase, as a protein phosphotransferase in vitro. While purified native Nm23 protein did not phosphorylate other proteins, we could purify a Nm23-associated protein that activates the protein phosphotransferase function; it was identified as a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) isoenzyme. Co-expression and purification of (His)6-tagged GAPDH in combination with either Nm23-H1 or Nm23-H2 in baculovirus-infected Sf9 cells showed that only Nm23-H1, but not Nm23-H2, forms a stable complex with GAPDH. Protein phosphotransferase activity was confirmed for the recombinant GAPDH.Nm23-H1 complex but not for either of the enzymes alone, nor was this activity observed after simple mixing of the purified proteins in vitro. The molecular mass of the highly purified recombinant GAPDH.Nm23-H1 complex suggests that a dimer of GAPDH interacts with a dimer of Nm23-H1. In contrast to the complex with GAPDH, co-expression of Nm23-H1 with antioxidant protein (MER-5) or creatine kinase did not activate the protein phosphotransferase function, indicating that this activation may specifically require GAPDH as a binding partner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.