Abstract

Prostatic carcinoma is characterised by the silencing of the pi-class glutathione S-transferase gene (GSTP1), which encodes a detoxifying enzyme. The silencing of GSTP1 results from aberrant methylation at the CpG island in the promoter-5' and occurs in the vast majority of cases of high-grade prostatic intraepithelial neoplasia (PIN) and prostate cancers. We review the potential novel role of GSTP1 and its related expression in prostate cancer. The loss of expression (silencing) of the GSTP1 gene is the most common (>90%) genetic alteration reported to date in prostate cancer. Quantitative methylation-specific PCR assays allow detection of GSTP1 methylation in prostate biopsies and may improve the sensitivity of cancer detection. Advances in the epigenetic characterisation of prostate cancer have enabled the development of DNA methylation assays that may soon be used in diagnostic testing of serum and tissue for prostate cancer. Inhibition of aberrant promoter methylation could theoretically prevent carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.