Abstract

The hexosamine biosynthetic pathway (HBP), a branch of glucose metabolism, provides a substrate for glycosylation modification, which has a wide-ranging effect on cellular functions. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) has been reported to regulate the HBP as the first and rate-limiting enzyme. Given the inverse association between GFPT2 expression and survival of patients with serous ovarian cancer (SOC) observed in The Cancer Genome Atlas (TCGA) database, we attempted to investigate the role of GFPT2 and its related mechanisms in SOC. The results showed that GFPT2 was over-expressed in SOC tissues, and positive correlations with advanced stage (FIGO III/IV), suboptimal removal rate and poor survival were observed in 90 SOC patients. Cell migration and invasion were also inhibited in GFPT2 knockdown SKOV3 and HEY cells. The levels of O-linked β-N-acetylglucosamine (O-GlcNAc) and intranuclear β-catenin were evaluated and the observed increase in O-GlcNAcylation induced by GFPT2 may contribute to epithelial-mesenchymal transition (EMT). These data provide novel insights into the function of GFPT2 and O-GlcNAcylation in the EMT and thus the invasiveness SOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.