Abstract

The ethylene biosynthetic pathway has been established as methionine (MET) to S-adenosylmethionine to 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and this pathway has been labeled System I. Another pathway to ethylene may exist during synthesis of massive amounts of ethylene, and this system has been labeled System II. Our objective was to evaluate the efficacy of several compounds as possible precursors of System II ethylene in ripening tomato fruit tissue. Discs of `Rutgers' tomato pericarp tissue at the mature green, pink, and red ripe stages were incubated continuously in 10, 25, or 40 mm solutions of MET, ACC, 5-aminolevulinic acid (ALA), homocysteine, glutamic acid (GLU), alpha-ketoglutarate, or citrate buffer (control). The ethylene production rate at 8-hour intervals during a 32-hour incubation period and free and conjugated ACC content at the end of the incubation period were quantified. Fruit discs at the mature green stage treated with MET and ACC exhibited increased ethylene production and increased free ACC content. These results confirmed the role of MET and ACC as the predominant precursors of ethylene during the early stages of fruit development in tomato (System I). At the pink stage (System II); however, ALA increased ethylene production by 75% and free ACC content by 46% over the control, and MET increased ethylene by 27% and free ACC content by 57% over the control. At the red ripe stage, ALA caused a 35% increase and GLU caused a 31% increase in ethylene production over the control. These results suggest that ALA and GLU may be metabolized to ethylene via an unknown pathway during tomato fruit ripening (System II).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.