Abstract

Taste receptor cells are chemical detectors in the oral cavity. Taste cells form synapses with primary afferent neurons that convey the gustatory information to the central nervous system. Taste cells may also synapse with other taste cells within the taste buds. Furthermore, taste cells may receive efferent connections. However, the neurotransmitters at these synapses have not been identified. Glutamate, a major excitatory neurotransmitter in other sensory organs, might act at synapses in taste buds. We used a cobalt staining technique to detect Ca2+-permeable glutamate receptors in taste buds and thus establish whether there might be glutamatergic synapses in gustatory end organs. When 500 μm slices of foliate and vallate papillae were briefly exposed to 1 mM glutamate in the presence of CoCl2, a subset of spindle-shaped taste cells accumulated Co2+. Cobalt uptake showed concentration-dependency in the range from 10 μm to 1 mM glutamate. Interestingly, higher glutamate concentrations depressed cobalt uptake. This concentration-response relation for cobalt uptake suggests that synaptic glutamate receptors, not receptors for glutamate taste, were activated. Sensory axons and adjacent non-sensory epithelium were not affected by these procedures. Glutamate-stimulated cobalt uptake in taste cells was antagonized by the non-NMDA receptor antagonist CNQX. Depolarization with 50 mM K+ and application of NMDA (300 μM) did not increase the number of stained taste cells. This pharmacological characterization of the cobalt uptake suggests that non-NMDA receptors are present in taste cells. These receptors might be autoreceptors at afferent synapses, postsynaptic receptors of a putative efferent system, or postsynaptic receptors at synapses with other taste cells. J. Comp. Neurol. 417:315–324, 2000. © 2000 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.