Abstract

Growth factor signaling results in dramatic phenotypic changes in cells, which require commensurate alterations in cellular metabolism. Mutations in SLC2A10/GLUT10, a member of the facilitative glucose transporter family, are associated with altered transforming growth factor-β (TGFβ) signaling in patients with arterial tortuosity syndrome (ATS). The objective of this work was to test whether SLC2A10/GLUT10 can serve as a link between TGFβ-related transcriptional regulation and metabolism during development. In zebrafish embryos, knockdown of slc2a10 using antisense morpholino oligonucleotide injection caused a wavy notochord and cardiovascular abnormalities with a reduced heart rate and blood flow, which was coupled with an incomplete and irregular vascular patterning. This was phenocopied by treatment with a small-molecule inhibitor of TGFβ receptor (tgfbr1/alk5). Array hybridization showed that the changes at the transcriptome level caused by the two treatments were highly correlated, revealing that a reduced tgfbr1 signaling is a key feature of ATS in early zebrafish development. Interestingly, a large proportion of the genes, which were specifically dysregulated after glut10 depletion gene and not by tgfbr1 inhibition, play a major role in mitochondrial function. Consistent with these results, slc2a10 morphants showed decreased respiration and reduced TGFβ reporter gene activity. Finally, co-injection of antisense morpholinos targeting slc2a10 and smad7 (a TGFβ inhibitor) resulted in a partial rescue of smad7 morphant phenotypes, suggesting scl2a10/glut10 functions downstream of smads. Taken together, glut10 is essential for cardiovascular development by facilitating both mitochondrial respiration and TGFβ signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.