Abstract

We study the gluon propagator and the singlet potential in Landau gauge in the deconfined phase of SU(2) lattice gauge theory, using both the standard Wilson action and a tree-level Symanzik improved action. From the long-distance behavior of correlation functions of temporal and spatial components of the gauge fields we extract electric (m_e) and magnetic (m_m) screening masses. For the magnetic mass we find m_m(T) = 0.456(6) g^2(T) T. The electric mass can be described by a next-to leading order ansatz, obtained from one loop resummed perturbation theory. However, the best description is given by m_e(T) = \sqrt{1.70(2)} g(T) T. The electric screening mass thus is different from its lowest order perturbative prediction even for temperatures as high as T \sim 10^4 T_c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.