Abstract

BackgroundHyperglycemia and dyslipidemia are classic features of patients with diabetes mellitus (DM). Cordyceps taii, a folk medicinal fungus native to southern China, possesses various pharmacological activities. This study aimed to assess the glucose-lowering and hypolipidemic effects of polysaccharides from C. taii (CTP) in streptozotocin (STZ)-induced diabetic mice.MethodsKunming mice were intraperitoneally injected with STZ at a dose of 100 mg/kg body weight. After induction of diabetes, diabetic mice were randomly divided into five groups: diabetic mellitus group (DM), metformin-treated group, low, medium, and high-dose CTP-treated group (CTP-L, CTP-M, and CTP-H). Normal mice served as the control group. After treatment for 28 days, body weight, fasting serum insulin (FSI), fasting blood glucose (FBG), homeostasis model assessment-insulin resistance (HOMA-IR), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) levels were measured. Histological analysis of pancreatic tissue and immune organ indices was also performed to evaluate the anti-diabetes effect of CTP. SPSS (version 21.0) software was used for statistical analysis, and statistical differences were considered significant at p < 0.05.ResultsCompared with the DM group, the body weight and FSI level of CTP-H group increased by 36.13 and 32.47%, whereas the FBG and HOMA-IR decreased by 56.79 and 42.78%, respectively (p < 0.05). Histopathological examination of the pancreas revealed that CTP improved and repaired the impaired islet β-cells in pancreatic tissue. Compared with the DM group, the levels of TC, TG, and LDL-C decreased by 13.84, 31.87, and 36.61%, whereas that of HDL-C increased by 28.60% in CTP-H (p < 0.05). Further study showed that the thymus index in CTP-H was elevated by approximately 54.96%, and the secretion of pro-inflammatory cytokines TNF-α, IL-6, and CRP was inhibited by approximately 19.97, 34.46, and 35.41%, respectively (p < 0.05).ConclusionThe anti-diabetes effect of CTP is closely associated with immunoregulation and anti-inflammation, and CTP may be considered as a therapeutic drug or functional food for DM intervention.

Highlights

  • Hyperglycemia and dyslipidemia are classic features of patients with diabetes mellitus (DM)

  • After 21 and 28 days, the body weights of the Metformin-treated group (MET), C. taii polysaccharides (CTP)-L, CTP-M, and CTP-H groups were significantly higher (p < 0.05) than that of the DM group

  • The results revealed that the oral administration of different concentrations of CTP (CTP-L, CTP-M, and CTP-H) for 28 days to diabetic mice significantly increased the levels of serum insulin (p < 0.05) and significantly reduced the level of Insulin resistance (IR) (p < 0.05) in a dose-dependent manner compared with the DM group

Read more

Summary

Introduction

Hyperglycemia and dyslipidemia are classic features of patients with diabetes mellitus (DM). Diabetes mellitus (DM), a chronic and systemic metabolic disease, is characterized by hyperglycemia and abnormalities in lipoprotein and lipid metabolism; DM can result in a series of complications, such as hypertension, hyperlipidemia, and atherosclerosis [1]. Insulin and multiple oral hypoglycemic agents, such as metformin, α-glucosidase inhibitors, sulfonylureas, and glibenclamide, are first-line anti-diabetes agents currently in use [3]. These prescribed medications, have several drawbacks or side effects, including high cost, occurrence of complications, hypoglycemia, nephrotoxicity, and drug resistance [4]. Exploring highly efficient, non-toxic, and low-cost novel agents for the treatment of DM and its complications is urgently needed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.