Abstract

Insulin binding and glucose oxidation were measured in isolated rat adipocytes in the presence of several anesthetics; ethanol, n-octanol, pentobarbital, chlorpromazine and tetracaine. Ethanol and chlorpromazine, at anesthetic and pentobarbitol at sub-anesthetic concentrations are inhibitory to both basal and insulin stimulated rates of glucose oxidation. At all concentrations of ethanol, pentobarbital or chlorpromazine tested binding of insulin is not affected. Since anesthetics may alter membrane fluidity, it is suggested that an anesthetic-induced increase in membrane fluidity beyond that which occurs at 37°C is detrimental to glucose oxidation. Of the 5 anesthetics examined, only chlorpromazine (10 μM or less) and tetracaine (500 μM) stimulate glucose oxidation. These two agents are known to bind to a cell's cytoskeletal system; the binding of chlorpromazine to microtubules is entropy driven. The temperature and concentration dependence of chlorpromazine stimulation of glucose oxidation (transport) are consistent with this form of binding. It is proposed that chlorpromazine binds to the cytoskeletal system of the adipocyte and that this system is normally restrictive to the motion of membrane proteins. Disruption of the cytoskeletal system by chlorpromazine or tetracaine would increase the frequency of insulin-receptor and glucose-carrier contact. Activation of glucose transport could ensue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.