Abstract
The brainstem contains various important monoaminergic neuronal centers, including the raphe nuclei which contain serotonergic neurons. The raphe nuclei, however, are not easily identifiable and located by conventional neuroimaging. Fluorodeoxyglucose positron emission tomography (PET) and magnetic resonance imaging (MRI) were performed in seven healthy subjects using a new PET-MRI, which consists of a high-resolution research tomograph (HRRT) PET and 7.0 T-MRI. Glucose metabolism of raphe nuclei was semiquantitatively measured and identified along the midline brainstem region in vivo. Midline nuclei clustered in four groups appeared to be the raphe nuclei and could be clearly visualized; specifically, we identified the groups as the dorsal raphe, raphe reticularis centralis superior, raphe pontis, and raphe magnus group. FDG imaging of the midline raphe nuclei in vivo could potentially be an important tool for investigating brain diseases as well as conducting functional brain studies in the context of sleep disorders, depression, and neurodegenerative disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.