Abstract

Glucose-stimulated increases in osteoclast activity are mediated, at least in part, by transcriptional regulation of H+-ATPase expression through a mechanism involving p38 mitogen-activated protein kinase. We hypothesized that early events in the glucose-dependent signaling pathway would be similar to those identified in other glucose-sensitive cells, such as islet beta-cells, including rapid changes in the cellular ATP/ADP ratio and mobilization of intracellular Ca2+. We demonstrate that glucose stimulates a prolonged 50% increase in the ATP/ADP ratio that was maximal 30 s after glucose concentrations were increased. Glucose stimulated a transient 30% increase in calcium/calmodulin-dependent kinase II (CaMK II) activity that was maximal 3 min after the glucose concentration was increased. CaMK II was activated maximally by 3 mmol D-glucose/L in 3-min assays. Activation of CaMK II in the presence of the nonmetabolizable glucose analog 2-deoxyglucose was 2-fold greater than with D-glucose but was unchanged by glucosamine. Pretreatment of osteoclasts with the intracellular Ca2+ chelator BAPTA-AM inhibited glucose transport by 75%. BAPTA-AM treatment also prevented glucose-dependent stimulation of CaMK II. The data indicate that osteoclasts utilize a glucose-sensing mechanism similar to that of beta-cells and that glucose-stimulated signaling in osteoclasts involves changes in the ATP/ADP ratio and mobilization of intracellular Ca2+, resulting in activation of CaMK II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.