Abstract
The genetic contribution of antigen-presenting molecules and the environmental ignition of an antigen-specific immune attack to pancreatic β-cells define autoimmune diabetes. We focused here on generating an antigen-specific model of autoimmune diabetes in humanized double-transgenic mice carrying antigen-presenting HLA-DQ8 diabetes-linked haplotype and expressing human autoantigen GAD65 in pancreatic β-cells using a relatively diabetes-susceptible strain of mice. Double transgenic (DQ8-GAD65) mice and controls were immunized with cDNA encoding human GAD65 in adenoviral vectors and monitored for glucose intolerance and diabetes. Human-GAD65 immunization induced insulitis, glucose intolerance and diabetes in double-transgenic mice, while controls were insulitis free and glucose tolerant. Glucose intolerance 10 weeks post-immunization was followed by diabetes later on in most animals. Destructive insulitis characterized by inflammation and apoptosis correlated with the diabetes outcome. Humoral immune responses to hGAD65 were sustained in mice with diabetes while transient in non-responders. Insulitis was massive in mice with diabetes while mild in non-responders by the end of the study. Our results show for the first time the occurrence of antigen-specific induced insulitis, impaired glucose homeostasis and diabetes after immunization with a clinically relevant, human autoantigen in the context of HLA-DQ8 diabetes-susceptibility transgenes and human GAD65 expression in β-cells. This animal model will facilitate studies of mechanisms of disease involved in development of autoimmunity to GAD65 in the context of HLA-DQ8. Furthermore, this model would be ideal for testing therapeutic strategies aimed at preventing human β-cell loss and/or restoring function in the setting of autoimmune diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.