Abstract

The role of glucose effectiveness (S G) in training-induced improvements in glucose metabolism in individuals with type 2 diabetes is unknown. The objectives and primary outcomes of this study were: (1) to assess the efficacy of interval walking training (IWT) and continuous walking training (CWT) on S G and insulin sensitivity (S I) in individuals with type 2 diabetes; and (2) to assess the association of changes in S G and S I with changes in glycaemic control. Fourteen participants with type 2 diabetes underwent three trials (IWT, CWT and no training) in a crossover study. Exclusion criteria were exogenous insulin treatment, smoking, pregnancy, contraindications to structured physical activity and participation in recurrent training (>90min/week). The trials were performed in a randomised order (computerised-generated randomisation). IWT and CWT consisted of ten supervised treadmill walking sessions, each lasting 60min, over 2weeks. IWT was performed as repeated cycles of 3min slow walking and 3min fast walking (aiming for 54% and 89% of [Formula: see text], respectively, which was measured during the last minute of each interval), and CWT was performed aiming for a moderate walking speed (73% of [Formula: see text]). A two-step (pancreatic and hyperinsulinaemic) hyperglycaemic clamp was implemented before and after each trial. All data were collected in a hospitalised setting. Neither participants nor assessors were blinded to the trial interventions. Thirteen individuals completed all procedures and were included in the analyses. IWT improved S G (mean ± SEM: 0.6±0.1mgkg-1min-1, p<0.05) but not S I (p>0.05), whereas CWT matched for energy expenditure and time duration improved neither S G nor S I (both p>0.05). Changes in S G, but not in S I, were associated with changes in mean (β=-0.62±0.23, r 2=0.17, p<0.01) and maximum (β=-1.18±0.52, r 2=0.12, p<0.05) glucose levels during 24h continuous glucose monitoring. Two weeks of IWT, but not CWT, improves S G but not S I in individuals with type 2 diabetes. Moreover, changes in S G are associated with changes in glycaemic control. Therefore, increased S G is likely an important mechanism by which training improves glycaemic control in individuals with type 2 diabetes. ClinicalTrials.gov NCT02320526 FUNDING: CFAS is supported by a grant from TrygFonden. During the study period, the Centre of Inflammation and Metabolism (CIM) was supported by a grant from the Danish National Research Foundation (DNRF55). The study was further supported by grants from Diabetesforeningen, Augustinusfonden and Krista og Viggo Petersens Fond. CIM/CFAS is a member of DD2-the Danish Center for Strategic Research in Type 2 Diabetes (the Danish Council for Strategic Research, grant no. 09-067009 and 09-075724).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.