Abstract

BackgroundIn Vietnam the blackwater fever syndrome (BWF) has been associated with malaria infection, quinine ingestion and G6PD deficiency. The G6PD variants within the Vietnamese Kinh contributing to the disease risk in this population, and more generally to haemoglobinuria, are currently unknown.MethodEighty-two haemoglobinuria patients and 524 healthy controls were screened for G6PD deficiency using either the methylene blue reduction test, the G-6-PDH kit or the micro-methaemoglobin reduction test. The G6PD gene variants were screened using SSCP combined with DNA sequencing in 82 patients with haemoglobinuria, and in 59 healthy controls found to be G6PD deficient.ResultsThis study confirmed that G6PD deficiency is strongly associated with haemoglobinuria (OR = 15, 95% CI [7.7 to 28.9], P < 0.0001). Six G6PD variants were identified in the Vietnamese population, of which two are novel (Vietnam1 [Glu3Lys] and Vietnam2 [Phe66Cys]). G6PD Viangchan [Val291Met], common throughout south-east Asia, accounted for 77% of the variants detected and was significantly associated with haemoglobinuria within G6PD-deficient ethnic Kinh Vietnamese (OR = 5.8 95% CI [114-55.4], P = 0.022).ConclusionThe primary frequency of several G6PD mutations, including novel mutations, in the Vietnamese Kinh population are reported and the contribution of G6PD mutations to the development of haemoglobinuria are investigated.

Highlights

  • In Vietnam the blackwater fever syndrome (BWF) has been associated with malaria infection, quinine ingestion and glucose-6-phosphate dehydrogenase (G6PD) deficiency

  • The first group comprised of 266 healthy Vietnamese Kinh who lived in Ho Chi Minh City (HCMC; male N = 162, female N = 98, not recorded N = 4)

  • Phenotypic screening for G6PD deficiency in healthy individuals from two ethnic groups, the Vietnamese Kinh and S'tieng, showed that the overall prevalence of the G6PD deficient phenotype in the southern Vietnamese population is relatively high at 11.3% (59/524)

Read more

Summary

Introduction

In Vietnam the blackwater fever syndrome (BWF) has been associated with malaria infection, quinine ingestion and G6PD deficiency. G6PD is the initial enzyme involved in the pentose phosphate pathway of erythrocyte metabolism. It is involved in the production of NADPH and indirectly of reduced glutathione necessary for the protection of the cells from oxidative stress. This enzyme is encoded by the G6PD gene, which is located at chromosome Xq28. The G6PD gene exhibits remarkable polymorphism in human populations and G6PD is known to have over 400 variants These variants are distinguished by their electrophoresis and biochemical characteristics and some variants are not associated with significantly reduced enzyme activity in erythrocytes [2]. 140 mutations of the G6PD gene have been identified

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.