Abstract

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that is a major source of cellular NADPH. The purpose of this study was to examine whether G6PD deficiency affects vascular oxidants and atherosclerosis in high-fat fed apolipoprotein (apo) E(-/-) mice. G6PD-mutant mice whose G6PD activity was 20% of normal were crossbred with apoE(-/-) mice. Among male apoE(-/-) mice that were fed a western-type diet for 11 weeks, G6PD wild-type (E-WT), and G6PD hemizygous (E-Hemi) mice were compared. Basal blood pressure was significantly higher in E-Hemi. However, superoxide anion release, nitrotyrosine, vascular cell adhesion molecule (VCAM)-1, and inducible nitric oxide synthase immunohistochemical staining were less in E-Hemi compared with E-WT aorta. Serum cholesterol level was lower in E-Hemi, but aortic lesion area was decreased in E-Hemi even after adjusting for serum cholesterol. Lower NADPH production in G6PD deficiency may result in lower NADPH oxidase-derived superoxide anion, and thus lower aortic lesion growth. The association of higher blood pressure with lower serum cholesterol levels in this mouse model is indicative of the complex effects that G6PD deficiency may have on vascular disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.