Abstract

Regulation of the mammalian branched-chain alpha-ketoacid dehydrogenase complex (BCKAD) occurs under a variety of stressful conditions associated with changes in circulating glucocorticoids. Multiple levels of regulation in hepatocytes, including alteration of the levels of the structural subunits available for assembly (E1, alpha-ketoacid decarboxylase; E2, dihydrolipoamide acyltransferase; and E3, dihydrolipoamide dehydrogenase), as well as BCKAD kinase, which serves to phosphorylate the E1alpha subunit and inactivate complex activity, have been proposed. The direct role of glucocorticoids in regulating the expression of the murine gene encoding the major BCKAD subunit E2, upon which the other BCKAD subunits assemble, was therefore examined. Deletion analysis of the 5' proximal 7.0 kb of the murine E2 promoter sequence, using E2 promoter/luciferase expression minigene plasmids introduced into the hepatic H4IIEC3 cell line, suggested a promoter proximal region responsive to glucocorticoid regulation. Linker-scanning mutagenesis combined with deletion analysis established this functional glucocorticoid-responsive unit (GRU) to be located near the murine E2 proximal promoter site at -140 to -70 bp upstream from the transcription initiation site. The presence of this region in plasmid minigenes, containing varying amounts of the murine genomic sequence 5' upstream from proximal E2 promoter sequences, conferred 2-10 fold increases in luciferase reporter gene expression in H4IIEC3 cells, whether introduced by transient transfection or following co-selection for stable transfectants. The GRU region itself appeared to contain multiple interacting elements that combine to regulate overall E2 promoter activity in response to changing physiological conditions associated with varying concentrations of glucocorticoids and likely other hormonal effectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.