Abstract

The lipopeptide antimycotic agent, cilofungin, at a dose of 20 micrograms ml-1, inhibited beta 1-3 glucan synthesis in a drug-susceptible strain (3153; minimum inhibitory concentration (MIC) < 1 microgram ml-1) as well as in a drug-resistant strain of Candida albicans (CA-2, derived from 3153 by nitrosoguanidine mutagenesis; MIC > 50 micrograms ml-1). This was demonstrated for both whole cells under growing and non-growing conditions, and during protoplast regeneration. However, time-effect experiments, during growth of a CA-2 culture initially exposed to an inhibitory dose of cilofungin, showed that this strain was able to progressively regain both glucan synthesis and a growth rate comparable to that of cultures that had not been treated with the drug. This recovery was not attributable to cilofungin instability or degradation within the CA-2 culture. Our study suggests the existence of an as yet unknown drug-related and/or cell-related factor(s) modulating the inhibition of glucan synthesis, and then contributing to the actual inhibitory effects of cilofungin in C. albicans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.