Abstract

This paper introduces a simple and effective approach to improve the accuracy of multiple sequence alignment. We use a natural measure to estimate the similarity of the input sequences, and based on this measure, we align the input sequences differently. For example, for inputs with high similarity, we consider the whole sequences and align them globally, while for those with moderately low similarity, we may ignore the flank regions and align them locally. To test the effectiveness of this approach, we have implemented a multiple sequence alignment tool called GLProbs and compared its performance with about one dozen leading alignment tools on three benchmark alignment databases, and GLProbs's alignments have the best scores in almost all testings. We have also evaluated the practicability of the alignments of GLProbs by applying the tool to three biological applications, namely phylogenetic trees construction, protein secondary structure prediction and the detection of high risk members for cervical cancer in the HPV-E6 family, and the results are very encouraging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.