Abstract

In the present study, efficient dechlorination and decomposition of dichloromethane (DCM) induced by glow discharge plasma (GDP) in contact with an aqueous solution was investigated. Experimental results showed that DCM underwent effective dechlorination and decomposition under the action of GDP. Both the removal and the dechlorination of DCM increased with increasing pH and with the presence of hydroxyl radical scavengers and decreased with quenchers of hydrated electrons. Formic acid and formaldehyde were the major intermediate byproducts. Final products were carbon dioxide and chloride ion. Hydrated electrons were the most important active species responsible for initiation of the reaction. Hydrolysis of the resulting chloromethyl radicals played an important role in mineralization of chlorine atoms of the molecule. Hydroxyl radicals were mainly involved in the oxidation of the intermediate byproducts. Reaction mechanism was proposed based on the dechlorination kinetics and the distribution of intermediate byproducts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.