Abstract

Homotopy methods are of great importance for the solution of systems of equations. It is a major problem to ensure well-defined iterations along the homotopy path. Many investigations have considered the complexity of path-following methods depending on the unknown distance of some given path to the variety of ill-posed problems. It is shown here that there exists a construction method for safe paths for a single algebraic equation. A safe path may be effectively determined with bounded effort. Special perturbation estimates for the zeros together with convergence conditions for Newton’s method in simultaneous mode allow our method to proceed on the safe path. This yields the first globally convergent, never-failing, uniformly iterative path-following algorithm. The maximum number of homotopy steps in our algorithm reaches a theoretical bound forecast by Shub and Smale i.e., the number of steps is at most quadratic in the condition number. A constructive proof of the fundamental theorem of algebra meeting demands by Gaus, Kronecker and Weierstras is a consequence of our algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.