Abstract
We establish global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with anisotropic viscosity acting only in the horizontal direction, which arises in ocean dynamics models. Global well-posedness for this system was proven by Danchin and Paicu; however, an additional smoothness assumption on the initial density was needed to prove uniqueness. They stated that it is not clear whether uniqueness holds without this additional assumption. The present work resolves this question and we establish uniqueness without this additional assumption. Furthermore, the proof provided here is more elementary; we use only tools available in the standard theory of Sobolev spaces, and without resorting to para-product calculus. We use a new approach by defining an auxiliary “stream-function” associated with the density, analogous to the stream-function associated with the vorticity in 2D incompressible Euler equations, then we adapt some of the ideas of Yudovich for proving uniqueness for 2D Euler equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.