Abstract
As unmanned aerial vehicles (UAVs) become increasingly autonomous, time-critical and complex single-operator systems will require advance prediction and mitigation of schedule conflicts. However, actions that mitigate a current schedule conflict may create future schedule problems. Decision support is needed allowing an operator to evaluate different mission schedule management options in real-time. This paper describes two decision support visualisations for single-operator supervisory control of four independent UAVs performing a time-critical targeting mission. A configural display common to both visualisations, called StarVis, graphically depicts current schedule problems, as well as projections of potential local and global schedule problems. Results from an experiment showed that subjects using the locally optimal StarVis implementation had better performance, higher situational awareness, and no significant increase in workload over a more globally optimal implementation of StarVis. This research effort highlights how the same decision support design applied at different abstraction levels can produce different performance results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Decision Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.