Abstract

We report global shear‐wave velocity structure and radial anisotropy in the upper mantle obtained using finite‐frequency surface‐wave tomography, based upon complete three‐dimensional Born sensitivity kernels. Because wavefront healing effects are properly taken into account, finite‐frequency surface‐wave tomography improves the resolution of small‐scale mantle heterogeneities, especially for deep anomalies that are constrained by the longest‐period surface waves. In our finite‐frequency model FFSW1, the globally averaged radial anisotropy shows a transition from positive (SH > SV) to negative anisotropy (SV > SH) at about 220 km, consistent with a change in the dominant mantle circulation pattern from predominantly horizontal flow at shallow depths to vertical flow at greater depths. The radial anisotropy beneath cratons and the old Pacific plate agrees well with previous studies. However, our model exhibits a strong negative radial anisotropy at depths greater than 120 km beneath mid‐ocean ridges, a feature that is not present in previous upper‐mantle models. More interestingly, the depth extent of the ridge anomalies is distinctly different beneath fast‐ and slow‐spreading centers; anomalies beneath fast‐spreading centers are stronger, but the strength decreases rapidly below 250 km. In contrast, beneath slow‐spreading centers such as the northern Mid‐Atlantic Ridge and the Red Sea, anomalies extend down at least to the top of the transition zone. The different depth extent of the ridge anomalies suggests that the primary driving force of slow‐spreading seafloor may be different from that of fast‐spreading seafloor and that active upwelling beneath slow‐spreading ridges may play a major role in the opening of the seafloor.

Highlights

  • Аннотация: В работе представлены результаты исследования анизотропных свойств верхней мантии Цен‐ тральной Азии, выполненного на основании представительной выборки дисперсионных кривых групповых скоростей основной моды волн Рэлея и Лява

  • The article presents the results of the study focused on the anisotropic properties of the upper mantle

  • The study is based on a representative set of the group velocity dispersion curves

Read more

Summary

ВВЕДЕНИЕ

В настоящее время установлено, что верхняя мантия Земли обладает анизотропными свойства‐ ми. По данным поверхностных волн обнаруживает‐ ся как азимутальная [Forsyth, 1975; Trampert, Wood‐ house, 2003], так и вертикальная анизотропия ско‐ ростей сейсмических волн [Yanovskaya, Kozhevnikov, 2006; Chen et al, 2009; Dziewonski, Anderson, 1981; Shapiro, Ritzwoller, 2002; Villaseñor et al, 2001; Zhou et al, 2006]. Что глубинное строение верхней мантии Центральной Азии достаточно хорошо изу‐ чено различными методами [Bijwaard et al, 1998; Koulakov, Bushenkova, 2010; Li et al, 2013; Pandey et al., 2014; Yanovskaya, Kozhevnikov, 2003; Zhao et al, 2006; и др.], количество работ, в которых учитывается вер‐ тикальная анизотропия верхней мантии, невелико, причем большинство из них – глобальные модели [Shapiro, Ritzwoller, 2002; Zhou et al, 2006], характе‐ ризующиеся невысоким горизонтальным разреше‐ нием. Область исследования ограничена по долго‐ те 80–130° Е и по широте 40–60° N и состоит из различных в тектоническом отношении регионов На юго‐ востоке в пределы исследуемой области также ча‐ стично входит Китайско‐Корейская платформа

ИСХОДНЫЕ ДАННЫЕ И МЕТОДЫ ИССЛЕДОВАНИЯ
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
ЗАКЛЮЧЕНИЕ
БЛАГОДАРНОСТИ
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.