Abstract

In this paper, we study the problem of robust global synchronization of resetting clocks in multi-agent networked systems, where by robust global synchronization we mean synchronization that is insensitive to arbitrarily small disturbances, and which is achieved from all initial conditions. In particular, we aim to address the following question: Given a set of homogeneous agents with periodic clocks sharing the same parameters, what kind of information flow topologies will guarantee that the resulting networked systems can achieve robust global synchronization? To address this question, we rely on the framework of robust hybrid dynamical systems and a class of distributed hybrid resetting algorithms. Using the hybrid-system approach, we provide a partial solution to the question: Specifically, we show that one can achieve robust global synchronization with no purely discrete-time solutions in any networked system whose underlying information flow topology is a rooted acyclic digraph. Such a result is complementary to the existing result [1] in which strongly connected digraphs are considered as the underlying information flow topologies of the networked systems. We have further computed in the paper the convergence time for a networked system to reach global synchronization. In particular, the computation reveals the relationship between convergence time and the structure of the underlying digraph. We illustrate our theoretical findings via numerical simulations towards the end of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.