Abstract

We present the results from a working system designed to reconstruct a complete 3D surface description from the extremal boundary of an object. Earlier work has shown that complete surface information (second order differential surface properties) can be recovered at edges generated by the extremal boundary of a 3D surface. In this paper we present new results in applying this theoretical framework to many views of real objects in order to show that many frames can be integrated into a common coordinate system to form a complete 3D model of an object. Our experiments place these multiple frames in a common coordinate system using known motion, if available, or by otherwise employing an algorithm for automatically computing object motion based on our classification of edges in the reconstruction process. We present experimental results on both real and synthetic data. Our experimental results on real objects show that with a calibrated trinocular camera system we can accurately reconstruct a complete surface description of 3D objects.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.