Abstract
It is well known that the mathematical biology and dynamical systems give very important information for the study and research of viral infection models such as HIV, HBV, HCV, Ebola and Influenza. This paper deals with the global dynamics of generalized virus model with logistic growth rate for target cells, general incidence rate and cellular immunity. The results will be obtained by using Lyapunov’s second method and LaSalle’s invariance principle. We prove the global stability of the rest points of the system by the value of basic reproduction number (R0) and the immune response reproduction number (RCTL). We have found that if R0<1, then the infection-free equilibrium is globally asymptotically stable. For R0>1 and RCTL<1, under certain conditions on incidence rate function, immune-free equilibrium is globally asymptotically stable. Finally, we prove that if R0>1 and RCTL>1, then under certain conditions on incidence rate function the endemic equilibrium is globally asymptotically stable. Since the logistic growth rate for target cells and general incidence rate have been included in this manuscript, our obtained results are the generalization of those in the previous literatures. Moreover, the results have been obtained with weaker assumptions in comparison with the previous ones. Numerical simulations are presented to support and illustrate our analytical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.