Abstract

Coupled systems on networks (CSNs) can be used to model many real systems, such as food webs, ecosystems, metabolic pathways, the Internet, World Wide Web, social networks, and global economic markets. This paper is devoted to investigation of the stability problem for some stochastic coupled reaction–diffusion systems on networks (SCRDSNs). A systematic method for constructing global Lyapunov function for these SCRDSNs is provided by using graph theory. The stochastic stability, asymptotically stochastic stability and globally asymptotically stochastic stability of the systems are investigated. The derived results are less conservative than the results recently presented in Luo and Zhang [Q. Luo, Y. Zhang, Almost sure exponential stability of stochastic reaction diffusion systems. Non-linear Analysis: Theory, Methods & Applications 71(12) (2009) e487–e493]. In fact, the system discussed in Q. Luo and Y. Zhang [Q. Luo, Y. Zhang, Almost sure exponential stability of stochastic reaction diffusion systems. Non-linear Analysis: Theory, Methods & Applications 71(12) (2009) e487–e493] is a special case of ours. Moreover, our novel stability principles have a close relation to the topological property of the networks. Our new method which constructs a relation between the stability criteria of a CSN and some topology property of the network, can help analyzing the stability of the complex networks by using the Lyapunov functional method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.