Abstract

We construct the propagator of the massless Dirac operator W on a closed Riemannian 3-manifold as the sum of two invariantly defined oscillatory integrals, global in space and in time, with distinguished complex-valued phase functions. The two oscillatory integrals—the positive and the negative propagators—correspond to positive and negative eigenvalues of W, respectively. This enables us to provide a global invariant definition of the full symbols of the propagators (scalar matrix-functions on the cotangent bundle), a closed formula for the principal symbols and an algorithm for the explicit calculation of all their homogeneous components. Furthermore, we obtain small time expansions for principal and subprincipal symbols of the propagators in terms of geometric invariants. Lastly, we use our results to compute the third local Weyl coefficients in the asymptotic expansion of the eigenvalue counting functions of W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.