Abstract
Food chain length is a fundamental ecosystem property, and plays a central role in determining ecosystem functioning. Recent advances in the field of stable isotope ecology allow the estimation of food chain length (FCL) from stable nitrogen isotope (δ15N) data. We conducted a global literature synthesis and estimated FCL for 219 lake, stream, and marine ecosystems. Streams had shorter food chains (∼3.5 trophic levels) than marine and lake ecosystems (∼4.0 trophic levels). In marine systems, inclusion of marine mammals increased FCL by 2/3 of a trophic level. For each ecosystem type, estimates of FCL were normally distributed and spanned two full trophic levels. Comparison with published connectance food webs revealed similar mean FCL values, though stable isotope‐derived FCL estimates were less variable. At the global scale, FCL showed weak or no relationships with ecosystem size, mean annual air temperature, or latitude. Our study highlights the utility of stable isotopes for quantifying among‐system food web variability, and the application of this approach for assessing global‐scale patterns of food chain length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.