Abstract

Rare species, which represent a large fraction of the taxa in ecological assemblages, account for much of the biological diversity on Earth. These species make substantial contributions to ecosystem functioning, and are targets of conservation policy. Here we adopt an integrated approach, combining information on the rarity of species trait combinations, and their spatial restrictedness, to quantify the biogeography of rare fish (a taxon with almost 13,000 species) in the world’s oceans. We find concentrations of rarity, in excess of what is predicted by a null expectation, near the coasts and at higher latitudes. We also observe mismatches between these rarity hotspots and marine protected areas. This pattern is repeated for both major groupings of fish, the Actinopterygii (bony fish) and Elasmobranchii (sharks, skates and rays). These results uncover global patterns of rarity that were not apparent from earlier work, and highlight the importance of using metrics that incorporate information on functional traits in the conservation and management of global marine fishes.

Highlights

  • Rare species, which represent a large fraction of the taxa in ecological assemblages, account for much of the biological diversity on Earth

  • Progress towards the goal of identifying which parts of the Earth support concentrations of rare species is greatest in terrestrial systems[9,10], with the geography of rarity in the oceans less well charted (but see Connolly, et al.[11] and Grenié, et al.7)

  • Hotspots of rarity occur on the East coast of Asia, Northeast and Southwest Australia and Southern Africa, with some concentration at the estuary of the Amazon River in Brazil and Central America for the bony fishes (Actinopterygii), (Fig. 1a), and on the East coast of Asia, the Southwest coast of Australia, South and West coasts of Africa, Central America and the UK for the cartilaginous fishes (Fig. 1c)

Read more

Summary

Introduction

Rare species, which represent a large fraction of the taxa in ecological assemblages, account for much of the biological diversity on Earth. Towards higher latitudes and in coastal systems, of bony and cartilaginous fish species that are rare in both taxonomic and functional dimensions, and document some mismatches between these rarity hotspots and the Marine Protected Areas of the world’s oceans.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.