Abstract

Environmental process modeling is challenged by the lack of high quality data, stochastic variations, and nonlinear behavior. Conventionally, parameter optimization is based on stochastic sampling techniques to deal with the nonlinear behavior of the proposed models. Despite widespread use, such tools cannot guarantee globally optimal parameter estimates. It can be especially difficult in practice to differentiate between lack of algorithm convergence, convergence to a non-global local optimum, and model structure deficits. For this reason, we use a deterministic global optimization algorithm for kinetic model identification and demonstrate it with a model describing a typical batch experiment. A combination of interval arithmetic, reformulations, and relaxations allows globally optimal identification of all (six) model parameters. In addition, the results suggest that further improvements may be obtained by modification of the optimization problem or by proof of the hypothesized pseudo-convex nature of the problem suggested by our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.