Abstract

This study analysed demand for 12 metals in global climate mitigation scenarios up to 2060 and quantified the impacts on demand of different assumptions on improvements and technological mix. Annual and cumulative demands were compared with reserves and current mining rates. The study results showed that reserves are sufficient to support the total level of solar power, wind power and electric motors. Insufficient reserves may very well constrain certain sub-technologies, but substitutes that take the role of ‘back-stop’ technologies can be used instead. The exception is batteries, since lithium battery chemistries and reserves were incompatible with the scenarios analysed. Batteries of moderate size, lithium-free chemistry or reserve expansion would make the transition feasible.Choice of sub-technology (e.g. type of solar PV) had a decisive impact on demand for certain metals. Perceptions that many metals are critical and scarce for renewable energy transitions appear exaggerated if a dynamic view on technological development is adopted. Policy-relevant conclusions can be drawn from this, regarding e.g. the benefits of technological diversity, increasing metal intensity, recycling and integrating infrastructure and energy policies (e.g. fast chargers).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.