Abstract

Luminescence lifetime imaging plays an important role in time-resolved detection of luminescence decay differences in microscopic scale. However, the traditional instruments always require expensive detector such as time-correlated single photon counter, stream camera, or intensified CCDs, limiting their practical applications. Herein, a novel approach for global lifetime imaging was developed based on an auto-phase-locked time-gated luminescence microscopy. By utilizing a common color CCD to photograph a set of time-gated luminescence images at different phase differences between the exciting and detecting, a luminescence lifetime image could be obtained by exponential fitting of the gray level of each pixel to the delay time. Compare to the lifetime imaging based on point-by-point scanning, this is a global lifetime measurement of all the pixels, which consumes much less time in detecting long-lifetimes over microseconds. Besides, this method needs no expensive confocal laser scanning systems, intensified CCDs or complex electronic phase matching control, which greatly simplifies the instrument and decreases the cost. This approach was successfully used for fast luminescence lifetime imaging of two classical TADF molecules, which exhibited obvious lifetime differences in microscopic scale. The temporal resolution of the system could reach a few microseconds, suggesting its extensive applicability for many other molecules with long lifetimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.