Abstract

In this paper, a novel framework, named as global-local feature attention network with reranking strategy (GLAN-RS), is presented for image captioning task. Rather than only adopting unitary visual information in the classical models, GLAN-RS explores the attention mechanism to capture local convolutional salient image maps. Furthermore, we adopt reranking strategy to adjust the priority of the candidate captions and select the best one. The proposed model is verified using the Microsoft Common Objects in Context (MSCOCO) benchmark dataset across seven standard evaluation metrics. Experimental results show that GLAN-RS significantly outperforms the state-of-the-art approaches, such as multimodal recurrent neural network (MRNN) and Google NIC, which gets an improvement of 20% in terms of BLEU4 score and 13 points in terms of CIDER score.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.