Abstract

In this paper, an adaptive controller is developed for a fully actuated marine vehicle where the rigid body and hydrodynamic parameters are unknown. A data-based integral concurrent learning method is used to compensate for the uncertain parameters. A Lyapunov-based analysis is presented to show that the closed-loop system is globally exponentially stable and the uncertain parameters are identified exponentially without the requirement of persistence of excitation. Experimental results on an autonomous surface vessel operating on a lake illustrate the controller's ability to track figure-8 trajectories in environments with small disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.