Abstract

In the current paper, a class of general neural networks with time-varying coefficients, reaction–diffusion terms, and general time delays is studied. Several sufficient conditions guaranteeing its global exponential stability and the existence of periodic solutions are obtained through analytic methods such as Lyapunov functional and Poincaré mapping. The obtained results assume no boundedness, monotonicity or differentiability of activation functions and can be applied within a broader range of neural networks. Among the presented conditions, some are independent of time delay and expressed in terms of system parameters, so easy to verify and of leading significance in applications. For illustration, an example is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.