Abstract
In this study, we discuss the global dynamics of the Holling-II amensalism model for a strong Allee effect of harmful species. We discuss the existence and stabilization of the extinction equilibria, exclusion equilibria, coexistence equilibria, and infinite singularities by analyzing the presence and stabilization of the system characteristics in terms of the possibilities and correspondences in the model when the death rate of the injured species is used as a threshold value. Also, we find that the two equilibrium points in the first quadrant are effective in proving that the model does not have globally stabilizing features and obtain two critical conditions and their corresponding global phase diagrams. Finally, we explore the weak Allee effect of the victim species, and using the analysis from numerical simulations, we recapitulate the analysis and dynamics of the model in equilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.