Abstract
Abstract. In the context of global warming, an increase in atmospheric aridity and global dryland expansion under the future climate has been expected in previous studies. However, this conflicts with observed greening over drylands and the insignificant increase in hydrological and ecological aridity from the ecohydrology perspective. Combining climatic, hydrological, and vegetation data, this study evaluated global dryland aridity changes at meteorological stations from 2003 to 2019. A decoupling between atmospheric, hydrological, and vegetation aridity was found. Atmospheric aridity represented by the vapor pressure deficit (VPD) increased, hydrological aridity indicated by machine-learning-based precipitation minus evapotranspiration (P − ET) data did not change significantly, and ecological aridity represented by the leaf area index (LAI) decreased. P − ET showed nonsignificant changes in most of the dominant combinations of the VPD, LAI, and P − ET. This study highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.