Abstract

By using the triaxial rotor model and the anharmonic vibrator model with phonon mixing, we derive a global correlation between the quadrupole moments of the two lowest 2+ states in collective nuclei that had previously been observed in experimental data across the periodic table. We then derive other electromagnetic properties for these two models of nuclear structure and compare them globally with experimental data. We find that both models are able to robustly describe the experimental data across the region of nuclei for which the models are applicable, including a large number that they have in common. We then show that there seems to exists a robust orthogonal transformation between these two models for realistic nuclear systems, suggesting that these two seemingly diverse descriptions of quadrupole collective phenomena seem to act in a similar model space and may therefore have a common origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.