Abstract

Spatial land surface heterogeneities are widespread at various scales and represent a great challenge to leaf area index (LAI) retrievals and product validations. In this paper, considering the mixed water and vegetation pixels prevalent at moderate and low resolutions, we propose a methodological framework for conducting global comparisons of heterogeneous land surfaces based on criterion setting and a global search of high-resolution data. We construct a global network, Heterogeneous Surface Network aiming Water and Vegetation Mixture (HESNet-WV), comprised of three vegetation types: grassland, evergreen broadleaf forests (EBFs), and evergreen needle forests (ENFs). Validation is performed using the MCD15A3H Global 500-m/4-day and GLASS 500-m/8-day LAI products. As the water area fraction (WAF), LAI values and LAI inversion errors increase in the MODIS and GLASS products, the GLASS product errors (relative LAI error (RELAI): 94.43%, bias: 0.858) are lower than the MODIS product errors (RELAI: 124.05%, bias: 1.209). The result indicates that the proposed framework can be applied to evaluate the accuracy of LAI values in mixed water-vegetation pixels in different global LAI products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.