Abstract

The model of spatial structure for the principal neutralizing determinant (PND) of the HIV-1 envelope protein gpl20 is proposed in terms of two-dimensional nuclear Overhauser effect (NOE) spectroscopy data. To build the model, the NMR-based theoretical conformational analysis of synthetic PND peptides of length 40, 24, and 12 residues is carried out. The modeling of the molecular spatial structures is performed by a new approach to research of conformationally mobile peptides using the algorithms of the restrained molecular mechanics method developed earlier. The following major conclusions are made based on the analysis of the simulated peptide conformations: i) there is not unique PND structure in solution, ii) there are seven different PND structures each of which agrees with the experimental data and stereochemical criteria used in computing its spatial model, iii) the PND is characterized by irregular conformation containing a number of reverse turns, iv) all of the selected conformations are conserved in the Gly-Pro-Gly-Arg-Ala-Phe stretch, the most provable viral immunodominant epitope. These data allow to suppose that binding properties of this site are determined by the structural motif which forms the conformation of a double β-turn and appears common for all hexapeptide structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.