Abstract

DNA methylation at the 5-position of cytosines (5 mC) represents an important epigenetic modification involved in tissue differentiation and is frequently altered in cancer. Recent evidence suggests that 5 mC can be converted to 5-hydroxymethylcytosine (5 hmC) in an enzymatic process involving members of the TET protein family. Such 5 hmC modifications are known to be prevalent in DNA of embryonic stem cells and in the brain, but the distribution of 5 hmC in the majority of embryonic and adult tissues has not been rigorously explored. Here, we describe an immunohistochemical detection method for 5 hmC and the application of this technique to study the distribution of 5 hmC in a large set of mouse and human tissues. We found that 5 hmC was abundant in the majority of embryonic and adult tissues. Additionally, the level of 5 hmC closely tracked with the differentiation state of cells in hierarchically organized tissues. The highest 5 hmC levels were observed in terminally differentiated cells, while less differentiated tissue stem/progenitor cell compartments had very low 5 hmC levels. Furthermore, 5 hmC levels were profoundly reduced in carcinoma of the prostate, breast and colon compared to normal tissues. Our findings suggest a distinct role for 5 hmC in tissue differentiation, and provide evidence for its large-scale loss in cancers.

Highlights

  • Epigenetic modifications play a crucial role in cellular differentiation and have been implicated in numerous disease states including cancer [1,2,3,4]

  • The recent discovery of a group of enzymes of the ten-eleven translocated (TET) family that can modify these DNA methylation marks by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) has added another dimension of complexity to our understanding of DNA methylation [7]. It has been well established for decades that certain bacteriophages contain 5-hydroxymethylcytosine rather than cytosine in their genome to protect themselves from host-controlled nucleases [8]

  • TET2 expressing and control HEK293 cells were incubated with 5hmC antibodies; immunocomplexes were visualized using HRP conjugated secondary antibodies with diaminobenzidine tetrahydrochloride (DAB) as a chromogen

Read more

Summary

Introduction

Epigenetic modifications play a crucial role in cellular differentiation and have been implicated in numerous disease states including cancer [1,2,3,4]. The recent discovery of a group of enzymes of the ten-eleven translocated (TET) family that can modify these DNA methylation marks by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) has added another dimension of complexity to our understanding of DNA methylation [7]. It has been well established for decades that certain bacteriophages contain 5-hydroxymethylcytosine rather than cytosine in their genome to protect themselves from host-controlled nucleases [8]. The tissue specific cellular distribution of 5hmC in normal adult tissues and neoplasia, has far not been welldocumented

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.