Abstract

BackgroundDespite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. The discovery of glioma stem cells (GSCs) may help to elucidate the processes of gliomagenesis with respect to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Research on GSCs is still in its infancy, so no definitive conclusions about their role can yet be drawn. To understand the biology of GSCs fully, it is highly desirable to establish permanent and biologically stable GSC lines.MethodsIn the current study, GSCs were isolated from surgical specimens of primary and recurrent glioma in a patient whose malignancy had progressed during the previous six months. The GSCs were cryopreserved and resuscitated periodically during long-term maintenance to establish glioma stem/progenitor cell (GSPC) lines, which were characterized by immunofluorescence, flow cytometry and transmission electronic microscopy. The primary and recurrent GSPC lines were also compared in terms of in vivo tumorigenicity and invasiveness. Molecular genetic differences between the two lines were identified by array-based comparative genomic hybridization and further validated by real-time PCR.ResultsTwo GSPC lines, SU-1 (primary) and SU-2 (recurrent), were maintained in vitro for more than 44 months and 38 months respectively. Generally, the potentials for proliferation, self-renewal and multi-differentiation remained relatively stable even after a prolonged series of alternating episodes of cryopreservation and resuscitation. Intracranial transplantation of SU-1 cells produced relatively less invasive tumor mass in athymic nude mice, while SU-2 cells led to much more diffuse and aggressive lesions strikingly recapitulated their original tumors. Neither SU-1 nor SU-2 cells reached the terminal differentiation stage under conditions that would induce terminal differentiation in neural stem cells. The differentiation of most of the tumor cells seemed to be blocked at the progenitor cell phase: most of them expressed nestin but only a few co-expressed differentiation markers. Transmission electron microscopy showed that GSCs were at a primitive stage of differentiation with low autophagic activity. Array-based comparative genomic hybridization revealed genetic alterations common to both SU-1 and SU-2, including amplification of the oncogene EGFR and deletion of the tumor suppressor PTEN, while some genetic alterations such as amplification of MTA1 (metastasis associated gene 1) only occurred in SU-2.ConclusionThe GSPC lines SU-1 and SU-2 faithfully retained the characteristics of their original tumors and provide a reliable resource for investigating the mechanisms of formation and recurrence of human gliomas with progressive malignancy. Such investigations may eventually have major impacts on the understanding and treatment of gliomas.

Highlights

  • Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive

  • The glioma stem/progenitor cell (GSPC) lines SU-1 and SU-2 faithfully retained the characteristics of their original tumors and provide a reliable resource for investigating the mechanisms of formation and recurrence of human gliomas with progressive malignancy

  • Growth and differentiation of glioma stem cells (GSCs) maintained long-term in vitro Glioma stem/progenitor (GSPC) cell lines, named SU-1 for the primary tumor and SU-2 for the recurrent tumor associated with malignancy progression, were maintained in vitro for more than 44 months and 38 months, respectively

Read more

Summary

Introduction

Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. Vescovi offered a functional definition of brain tumor stem cells, namely: brain tumor cells should qualify as stem cells if they show cancer-initiating ability upon orthotopic implantation, extensive self-renewal ability demonstrated either ex vivo or in vivo, karyotypic or genetic alterations, aberrant differentiation properties, capacity to generate non-tumorigenic end cells, and multilineage differentiation capacity [6]. Because this subpopulation of glioma cells, generally called glioma stem cells (GSCs), may play an extremely critical role in the initiation and recurrence of gliomas, studies focusing on GSCs have been promoted rapidly. Permanent GSC lines could serve such purposes better than GSCs maintained short-term

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.