Abstract

Stroke remains a debilitating disease with high incidence of morbidity and mortality, where many reports provide promising venues for prevention/treatment of such ailment. Glibenclamide, a selective blocker of KATP channels, was reported to protect against ischemia and ischemia–reperfusion (IR) injury in several experimental models. Hence, the present study aimed to investigate the possible involvement of free radicals as well as inflammatory and anti-inflammatory mediators in the hippocampus of rats exposed to IR. To this end, male Wistar rats were divided into 3 groups: group I served as sham operated controls; group II was subjected to 15min ischemia by occlusion of both common carotid arteries, followed by 60min reperfusion; group III was injected with glibenclamide (1mg/kg, i.p.) 10min before ischemic–reperfusion injury. IR increased lipid peroxides, myeloperoxidase activity, TNF-α and PGE2, while decreasing glutathione, total antioxidant capacity, nitric oxide and IL-10 levels in the hippocampus. Glibenclamide reversed all the former alterations, thus highlighting a potential therapeutic utility for this sulphonyl urea in IR brain injury via modulating oxidative stress and inflammatory mediators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.