Abstract

Astrocytes play key roles in regulating multiple aspects of neuronal function from invertebrates to humans and display Ca2+ fluctuations that are heterogeneously distributed throughout different cellular microdomains. Changes in Ca2+ dynamics represent a key mechanism for how astrocytes modulate neuronal activity. An unresolved issue is the origin and contribution of specific glial Ca2+ signaling components at distinct astrocytic domains to neuronal physiology and brain function. The Drosophila model system offers a simple nervous system that is highly amenable to cell-specific genetic manipulations to characterize the role of glial Ca2+ signaling. Here we identify a role for ER store-operated Ca2+ entry (SOCE) pathway in perineurial glia (PG), a glial population that contributes to the Drosophila blood-brain barrier. We show that PG cells display diverse Ca2+ activity that varies based on their locale within the brain. Ca2+ signaling in PG cells does not require extracellular Ca2+ and is blocked by inhibition of SOCE, Ryanodine receptors, or gap junctions. Disruption of these components triggers stimuli-induced seizure-like episodes. These findings indicate that Ca2+ release from internal stores and its propagation between neighboring glial cells via gap junctions are essential for maintaining normal nervous system function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.